Factor IX Activity

Test ID: 

704508

CPT code:

85250

Synonyms:

Antihemophilic Factor B

Clinical Use:

Evaluate an isolated, prolonged aPTT and to document specific factor IX deficiency.

Test Information:

Factor IX is a 72 kilodalton vitamin K-dependent glycoprotein proenzyme that is produced by the liver. Factor IX’s plasma concentration is 3-5 mg/mL and half-life is about 24 hours.6 Factor IX deficiency should be suspected when a patient with excessive bleeding has a normal protime (PT) and an extended activated partial thromboplastin time (aPTT).
Hemophilia B, or Christmas disease, occurs as the result of congenital deficiency of factor IX. Clinical features of hemophilia B are the same as for hemophilia A which is caused by factor VIII deficiency. Hemophilia B is less common than hemophilia A, occurring in approximately 1 of every 30,000 live male births. The prevalence is significantly higher in Amish and East Indian populations. This condition is transmitted as an X chromosome-linked hereditary disorder. The majority of cases occur in men whose mothers are carriers of the genetic defect. A subtype of hemophilia B, hemophilia B Leiden, is characterized by altered developmental expression of factor IX such that plasma factor IX levels may be <1% of normal during childhood, but after puberty may gradually rise to a maximum of 70% of normal. Hemophilia B can also occur as the result of spontaneous mutations of the factor IX gene locus. Female carriers of hemophilia B may rarely present with excessive bleeding. Hemophilia symptoms can also occur in female carriers that have a high degree of lyonization of the factor X alleles. Females with Turner syndrome, karyotype XO, can also be symptomatic.
The severity of hemophilia B can be defined by the level of factor IX activity. Severe hemophilia is associated with a factor IX level of <1%. Moderate hemophilia B occurs with factor IX levels of 1% to 5% and mild hemophilia has factor IX levels >5%.
Patients with hemophilia B can present with any of a number of bleeding manifestations. Often, infants with severe hemophilia are first diagnosed during the neonatal period because of excessive bleeding after circumcision or due to cord necrosis. Hemophilic infants also frequently suffer from intracranial hemorrhage or scalp hematomas. Spontaneous hemarthroses, a common symptom of hemophilias, typically do not occur until the child starts walking. Hematomas can often be observed at the sites of intramuscular injections for vaccination or medication. The most common sites of spontaneous bleeding in patients with severe hemophilia are involve the joints and muscles. Recurrent bleeding leads to chronic muscle injury and degeneration of the joint tissue. Gastrointestinal bleeding can occur in approximately 10% of hemophiliacs. Males with mild to moderate hemophilia and female carriers may have an increased bleeding tendency, especially following surgery or trauma.
Acquired factor IX deficiency can occur as the result of oral anticoagulant therapy or with vitamin K deficiency. Individuals with advance liver disease can have a generalized decrease in coagulation factors, including factor IX.
Elevation of factor IX, if persistent, has been associated with approximately a twofold increased risk for venous thrombosis. The basis for this increased risk is not well understood and the clinical cutoff for risk assessment has yet to be established.
Hemophilia B patients receiving replacement products can develop inhibitors to factor IX in approximately 3% of cases, due to the production of alloantibodies. Acquired hemophilia caused by the development of autoantibodies to factor IX can also occur. This rare condition can occurs most often in individuals with autoimmune disorders. These patients have bleeding symptoms similar to those seen in congenital hemophilia B.

Specimen Type:

Plasma, frozen

Requested Volume: 

2 mL

Minimum Volume: 

1 mL

Container Type: 

Blue-top (sodium citrate) tube

Patient Preparation: 

Ideally, the patient should not be on anticoagulant therapy. Avoid warfarin (Coumadin®) therapy for two weeks prior to the test and heparin, direct Xa, and thrombin inhibitor therapies for about three days prior to testing. Do not draw from an arm with a heparin lock or heparinized catheter.

Collection:

Blood should be collected in a blue-top tube containing 3.2% buffered sodium citrate.1 Evacuated collection tubes must be filled to completion to ensure a proper blood-to-anticoagulant ratio.2,3 The sample should be mixed immediately by gentle inversion at least six times to ensure adequate mixing of the anticoagulant with the blood. A discard tube is not required prior to collection of coagulation samples unless the sample is collected using a winged (butterfly) collection system. With a winged blood collection set a discard tube should be drawn first to account for the dead space of the tubing and prevent under-filling of the evacuated tube.4,5 When noncitrate tubes are collected for other tests, collect sterile and nonadditive (red-top) tubes prior to citrate (blue-top) tubes. Any tube containing an alternative anticoagulant should be collected after the blue-top tube. Gel-barrier tubes and serum tubes with clot initiators should also be collected after the citrate tubes.

Storage Instructions:

Freeze.

Stability Requirements:

Freeze.

Rejection Criteria

Severe hemolysis; improper labeling; clotted specimen; specimen diluted with IV fluids; samples thawed in transit; improper sample type; sample out of stability

Return Back to Test Directory

MCI Diagnostic

Providing top patient care with fast results. 

Hours of Operation

Mon - Sat: 7 AM-11 PM

Sun: 7 AM-3 PM

COVID-19 Drive-Thru Hours

Mon-Fri: 9 AM-6 PM

Sat: 9 AM-3 PM

More Information - Click Here

Government Contract

DUNS # 125722608

Cage Code: 3FPQ3

COVID-19

COVID-19 Fee & Pricing